Mobile phone radiation and health concerns have been raised, especially following the enormous increase in the use of wireless mobile telephony throughout the world (as of August 2005, there were more than 2 billion users worldwide). This is because mobile phones use electromagnetic waves in the microwave range. These concerns have induced a large body of research (both epidemiological and experimental, in non-human animals as well as in humans). Concerns about effects on health have also been raised regarding other digital wireless systems, such as data communication networks.
The World Health Organization has concluded that serious health effects (e.g. cancer) are very unlikely to be caused by cellular phones or their base stations, and expects to make recommendations about mobile phones in 2007–08.
However, some nation's radiation advisory authorities, including those of Austria, Germany, and Sweden, recommend their citizens to minimize radiation. Examples of recommendations are:
* Use hands-free to decrease the radiation to the head.
* Keep the mobile phone away from the body.
* Do not telephone in a car without an external antenna.
Still, the use of "hands-free" is not recommended by the British Consumers' Association
Health hazards of handsets
Part of the radio waves emitted by a mobile telephone handset are absorbed by the human head. The radio waves emitted by a GSM handset, can have a peak power of 2 watts, and a US analog phone had a maximum transmit power of 3.6 watts. Other digital mobile technologies, such as CDMA and TDMA, use lower output power, typically below 1 watt. The maximum power output from a mobile phone is regulated by the mobile phone standard it is following and by the regulatory agencies in each country. In most systems the cellphone and the base station check reception quality and signal strength and the power level is increased or decreased automatically, within a certain span, to accommodate for different situations such as inside or outside of buildings and vehicles.
The rate at which radiation is absorbed by the human body is measured by the Specific Absorption Rate (SAR), and its maximum levels for modern handsets have been set by governmental regulating agencies in many countries. In the USA, the FCC has set a SAR limit of 1.6 W/kg, averaged over a volume of 1 gram of tissue, for the head. In Europe, the limit is 2 W/kg, averaged over a volume of 10 grams of tissue. SAR values are heavily dependent on the size of the averaging volume. Without information about the averaging volume used comparisons between different measurements can not be made. Thus, the European 10-gram ratings should be compared among themselves, and the American 1-gram ratings should only be compared among themselves.
Thermal effects
One well-understood effect of microwave radiation is dielectric heating, in which any dielectric material (such as living tissue) is heated by rotations of polar molecules induced by the electromagnetic field. In the case of a person using a cell phone, most of the heating effect will occur at the surface of the head, causing its temperature to increase by a fraction of a degree. In this case, the level of temperature increase is an order of magnitude less than that obtained during the exposure of the head to direct sunlight. The brain's blood circulation is capable of disposing of excess heat by increasing local blood flow. However, the cornea of the eye does not have this temperature regulation mechanism. Premature cataracts are known as an occupational disease of engineers who work on high power radio transmitters at similar frequencies.[citation needed] Premature cataracts however, have not been linked with cell phone use, possibly because of the lower power output of mobile phones.
It has been claimed that some parts of the human head are more sensitive to damage from increases in temperature, particularly in anatomical structures with poor vasculature, such as nerve fibers. More recent results from a Swedish scientific team at the Karolinska Institute (Lonn, Ahlbom, Hall and Feychting) have suggested that continuous use of a mobile phone for a decade or longer can lead to a small increase in the probability of getting acoustic neuroma, a type of brain tumor. The increase was not noted in those who used phones for less than 10 years.
Non-thermal effectsThe communications protocols used by mobile phones often result in low-frequency pulsing of the carrier signal.
Some researchers have argued that so-called "non-thermal effects" could be reinterpreted as a normal cellular response to an increase in temperature. The noted German biophysicist Roland Glaser, for example[6], has argued that there are several thermoreceptor molecules in cells, and that they activate a cascade of second and third messenger systems, gene expression mechanisms and production of heat shock proteins in order to defend the cell against metabolic cell stress caused by heat. The increases in temperature that cause these changes are too small to be detected by studies such as REFLEX, which base their whole argument on the apparent stability of thermal equilibrium in their cell cultures.
Swedish researchers from the University Lund, Salford, Brun, Perrson, Eberhardt and Malmgren, have studied the effects of microwave radiation on the rat brain. They found a leakage of albumin into brain via a permeated blood-brain barrier.
Genotoxical effectsResearch from Greece towards the end of 2006 found a direct causal relationship between mobile phone radiation and DNA damage.In December 2004 a pan-European study named REFLEX (Risk Evaluation of Potential Environmental Hazards from Low Energy Electromagnetic Field (EMF) Exposure Using Sensitive in vitro Methods), involving 12 collaborating laboratories in several countries showed some compelling evidence of DNA damage of cells in in-vitro cultures, when exposed between 0.3 to 2 watts/kg, whole-sample average. There were indications, but not rigorous evidence of other cell changes, including damage to chromosomes, alterations in the activity of certain genes and a boosted rate of cell division.
source:wikipidia